Territorial organization of direction-selective ganglion cells in rabbit retina.

نویسنده

  • D I Vaney
چکیده

The On-Off direction-selective (DS) ganglion cells in the rabbit retina comprise four discrete subtypes that orthogonally code the direction of image motion. This study examined the dendritic relationships between different subtypes of On-Off DS cells, which were identified by their distinctive type 1 bistratified (BiS1) morphology following the intracellular injection of a biotinylated tracer or Lucifer yellow under direct microscopic control. The dendrites of BiS1 cells that had closely spaced somata, which presumably comprised subtypes of On-Off DS cells with different preferred directions, were not randomly superimposed but were fasciculated into loose bundles. By contrast, tracer coupling revealed that neighboring On-Off DS cells of one subtype were highly territorial, providing complete coverage of the retina with minimal overlap. This mirrors, on a larger scale, the territorial organization within the dendritic tree of individual DS cells, suggesting that similar interactions shape both the branching pattern and the spatial extent of these neurons. Moreover, the dendrites at the edge of the dendritic field often formed tip-to-shaft or tip-to-tip contacts with dendrites from coupled cells, thus appearing to form closed dendritic loops that may be equivalent to those found within the dendritic tree. Consequently, the dendrites of one subtype are distributed uniformly and economically across the retina. The resulting plexus forms a strikingly regular scaffold on which the presynaptic interneurons generate direction selectivity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression of Nicotinic Acetylcholine Receptor α4 and β2 Subunits on Direction-Selective Retinal Ganglion Cells in the Rabbit

The direction selectivity of the retina is a distinct mechanism that is critical function of eyes for survival. The direction-selective retinal ganglion cells (DS RGCs) strongly respond to a preferred direction, but rarely respond to opposite direction or null directional visual stimuli. The DS RGCs are sensitive to acetylcholine, which is secreted from starburst amacrine cells (SACs) to the DS...

متن کامل

Direction-selective units in rabbit retina: distribution of preferred directions.

The preferred directions of 102 direction-selective ganglion cells in the rabbit retina have been determined. Cells of the "on-off" type form four nonoverlapping groups; cells of the "on" type fall into three groups. The on-off groups appear to correspond to the directions of apparent object displacement produced by contractions of the four rectus muscles. Each group of cells could, without fur...

متن کامل

Identification of ON-OFF direction-selective ganglion cells in the mouse retina.

We identified the ON-OFF direction-selective ganglion cells (DSGCs) in the mouse retina and characterized their physiological, morphological and pharmacological properties. These cells showed transient responses to the onset and termination of a stationary flashing spot, and strong directional selectivity to a moving rectangle. Application of various pharmacological reagents demonstrated that t...

متن کامل

Simulation of movement detection by direction-selective ganglion cells in the rabbit and squirrel retina.

A veto-gate model of movement detection by direction-selective ganglion cells in the vertebrate retina, first proposed by Barlow and Levick (1965), provides the basis for a model described in this study. The model is a simple network consisting basically of (1) two subunits that have receptive fields with a center-surround organization and an adaptational gain control, (2) a lateral inhibitory ...

متن کامل

Physiological properties of direction-selective ganglion cells in early postnatal and adult mouse retina.

Selective responses of retinal ganglion cells (RGCs) to the direction of motion have been recorded extracellularly from the rabbit and the mouse retina at eye opening. Recently, it has been shown that the development of this circuitry is light independent. Using whole-cell patch clamp recording, we report here that mouse early postnatal direction-selective ganglion cells (DSGCs) showed lower me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 14 11 Pt 1  شماره 

صفحات  -

تاریخ انتشار 1994